Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 666: 201-209, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38593654

ABSTRACT

Perylene diimides (PDI) are widely used in photocatalytic oxygen evolution due to their deep valence band potentials. Here, we report the synthesis of a unique supramolecular photocatalyst (designated s-PDI-P1) by introducing hydroxyl and carboxyl groups at the imide position of PDI. This modification allows the formation of intermolecular double hydrogen bond structures between the hydroxyl groups, oxygen atoms on the perylene cores and the carboxyl groups. The resulting double hydrogen bonding structures reduce lateral slip and promote the formation of supramolecular structures with H-type π-π stacking. In addition, the intermolecular hydrogen bonding interactions between the hydroxyl groups and the oxygen atoms on the perylene cores bring the PDI molecules closer together, enhancing the conjugation of the PDI supramolecules and facilitating the formation of ultrathin nanosheet-like structures. In this study, we successfully constructed ultrathin nanosheets of the supramolecular photocatalyst s-PDI-P1 with a compact H-type π-π stacking structure, which exhibited enhanced charge transfer capability, shorter charge migration distance, and achieved a high photocatalytic oxygen evolution rate of 3.23 mmolg-1h-1. These results highlight the potential of intermolecular double hydrogen bond structures to improve the separation and migration driving force of photogenerated charges, thus providing a novel design strategy for organic photocatalysts.

2.
Materials (Basel) ; 17(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38612128

ABSTRACT

This study focuses on using activated fly ash to preparate silica aerogel by the acid solution-alkali leaching method and ambient pressure drying. Additionally, to improve the performance of silica aerogel, C6H16O3Si (KH-570) and CH3Si(CH3O)3 (MTMS) modifiers were used. Finally, this paper investigated the factors affecting the desilication rate of fly ash and analyzed the structure and performance of silica aerogel. The experimental results show that: (1) The factors affecting the desilication rate are ranked as follows: hydrochloric acid concentration > solid-liquid ratio > reaction temperature > reaction time. (2) KH-570 showed the best performance, and when the volume ratio of the silica solution to it was 10:1, the density of silica aerogel reached a minimum of 183 mg/cm3. (3) The optimal process conditions are a hydrochloric acid concentration of 20 wt%, a solid-liquid ratio of 1:4, a reaction time of two hours, and a reaction temperature of 100 °C. (4) The optimal performance parameters of silica aerogel were the thermal conductivity, specific surface area, pore volume, average pore size, and contact angle values, with 0.0421 W·(m·K)-1, 487.9 m2·g-1, 1.107 cm3·g-1, 9.075 nm, and 123°, respectively. This study not only achieves the high-value utilization of fly ash, but also facilitates the effective recovery and utilization of industrial waste.

3.
Environ Pollut ; 343: 123129, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38092337

ABSTRACT

The unprecedented proliferation of disposable face masks during the COVID-19 pandemic, coupled with their improper disposal, threatens to exacerbate the already concerning issue of plastic pollution. This study evaluates the role of environmentally weathered masks as potential sources of microplastics (MPs) and nanoplastics (NPs) and assesses their adverse impact on the early life stages of zebrafish. Experimental findings revealed that a single disposable mask could release approximately 1.79 × 109 particles, with nearly 70% measuring less than 1 µm, following 60 days of sunlight exposure and subsequent sand-induced physical abrasion. Remarkably, the MPs/NPs (MNPs) emanating from face masks have the potential to permeate the outer layer (chorion) of zebrafish embryos. Furthermore, due to their minute size, these particles can be consumed by the larvae's digestive system and subsequently circulated to other tissues, including the brain. Exposure to mask-derived MNPs at concentrations of 1 and 10 µg/L led to significant cases of developmental toxicity, incited oxidative stress, and prompted cell apoptosis. A subsequent metabolomics analysis indicated that the accumulation of these plastic particles perturbed metabolic functions in zebrafish larvae, primarily disrupting amino acid and lipid metabolism. The outcomes of this research underscore the accelerating possibility of environmental aging processes and physical abrasion in the release of MNPs from disposable face masks. Most importantly, these results shed light on the possible ecotoxicological risk posed by improperly disposed of face masks.


Subject(s)
COVID-19 , Humans , Animals , Zebrafish , Microplastics/toxicity , Masks , Pandemics , Plastics
4.
Article in English | MEDLINE | ID: mdl-37717676

ABSTRACT

Tris (2-chloroethyl) phosphate (TCEP) has been receiving great concerns owing to its ubiquitous occurrence in various environmental compartments and potential risks to wildlife and humans. Gill is structural basis for ion regulation and homeostasis in fish and susceptible to xenobiotics. However, current knowledge on the impacts of long-term exposure to TCEP on the structure and physiological function of fish gills are insufficient. In this work, zebrafish were exposed to environmental realistic concentrations (0.8, 4, 20 and 100 µg/L) of TCEP from 3 h post ferterlization (hpf) till 120 days post ferterlization (dpf). Our results demonstrated that life-cycle exposure to TCEP significantly decreased the activity of glutathione S-transferase (GST), but elevated the activities of antioxidative enzymes including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and increased malondialdehyde (MDA) content in zebrafish gills. Gene transcription analysis implied that the mRNA expressions of antioxidant-related genes (nrf2, cat and nqo1) were induced, while the transcription of gstα1, hmox1, keap1 were down-regulated, indicating that Nrf2-Keap1 pathway might be activated to defend the oxidative stress induced by TCEP. Additionally, the ion homeostasis was disrupted by TCEP exposure, evidenced by reduced activities of Na+/K+-ATPase (NKA), Ca2+-ATPase and Mg2+-ATPase and downregulated transcription levels of ncc, nkcc, cftr and clc-3. Besides, whole-life exposure to TCEP resulted in a series of structural damages to gills, including epithelial lifting, epithelial rupture, telangiectasis, vacuolation, edema and shortened gill lamellae. Overall, our results demonstrated that long-term TCEP exposure could induce oxidative stress, affect ion regulation and cause histological changes in zebrafish gills.

5.
Ecotoxicol Environ Saf ; 248: 114313, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36410141

ABSTRACT

Tris (2-chloroethyl) phosphate (TCEP), an emerging environmental pollutant, has been frequently detected in natural waters. The objective of this study was to investigate possible parental transfer of TCEP and transgenerational effects on the early development and thyroid hormone homeostasis in F1 larvae following parental whole life-cycle exposure to TCEP. To this end, zebrafish (Danio rerio) embryos were exposed to environmentally relevant concentrations (0.8, 4, 20 and 100 µg/L) of TCEP for 120 days until sexual maturation. Parental exposure to TCEP resulted in significant levels of TCEP, developmental toxicity including decreased survival and final hatching rates, accelerated heart rate and elevated malformation rate, as well as induction of oxidative stress and cell apoptosis in F1 offspring. In F1 eggs, declined thyroxin (T4) levels were observed, consistent with those in plasma of F0 adult females, indicating the maternal transfer of thyroid endocrine disruption to the offspring. In addition, mRNA levels of several genes along the hypothalamic-pituitary-thyroid (HPT) axis were significantly modified in F1 larvae, which could be linked to transgenerational developmental toxicity and thyroid hormone disruption. For the first time, we revealed that the parental exposure to environmentally relevant levels of TCEP could cause developmental toxicity and thyroid endocrine disruption in subsequent unexposed generation.


Subject(s)
Thyroid Gland , Zebrafish , Female , Animals , Embryonic Development , Life Cycle Stages , Larva , Phosphates
6.
Article in English | MEDLINE | ID: mdl-35793736

ABSTRACT

Sulfamethoxazole (SMX), a broad-spectrum antibiotic, has been widely used in the treatment and prevention of infection caused by bacteria in recent years. The present study was aimed to evaluate the response mechanisms to SMX stress in gills and digestive gland of Corbicula fluminea (O. F. Müller, 1774). To this end, clams were exposed to environmentally relevant concentrations of SMX (0, 1, 10 and 100 µg/L) for 7 and 28 days, and siphon behavior, tissue-specific enzymatic and transcriptional changes were assayed. Our results showed that exposure to SMX significantly suppressed filtration rate and acetylcholinesterase (AChE) activity, activated antioxidant defense system and elevated transcription of several genes related to cell apoptosis in gills and digestive gland of clams. In general, SMX at environmentally relevant concentrations exhibited a negative impact on siphon behavior and induced neurotoxicology, oxidative stress and cell apoptosis in C. fluminea. The current study will help broaden our understanding of the ecotoxicity of SMX on freshwater bivalves.


Subject(s)
Corbicula , Water Pollutants, Chemical , Acetylcholinesterase , Animals , Gills , Sulfamethoxazole/toxicity , Water Pollutants, Chemical/toxicity
7.
Sensors (Basel) ; 22(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35684831

ABSTRACT

With recent developments, the performance of automotive radar has improved significantly. The next generation of 4D radar can achieve imaging capability in the form of high-resolution point clouds. In this context, we believe that the era of deep learning for radar perception has arrived. However, studies on radar deep learning are spread across different tasks, and a holistic overview is lacking. This review paper attempts to provide a big picture of the deep radar perception stack, including signal processing, datasets, labelling, data augmentation, and downstream tasks such as depth and velocity estimation, object detection, and sensor fusion. For these tasks, we focus on explaining how the network structure is adapted to radar domain knowledge. In particular, we summarise three overlooked challenges in deep radar perception, including multi-path effects, uncertainty problems, and adverse weather effects, and present some attempts to solve them.


Subject(s)
Radar , Signal Processing, Computer-Assisted , Perception , Weather
8.
Article in English | MEDLINE | ID: mdl-35351617

ABSTRACT

Diclofenac (DCF), one of typical non-steroidal anti-inflammatory drugs (NSAIDs), has been frequently detected in various environmental media. Nevertheless,the potential endocrine disrupting effects of DCF on fish were poorly understood. In the present study, zebrafish embryos/larvae were used as a model to evaluate the adverse effects of DCF on development and thyroid system. The results demonstrated that DCF only significantly decreased the heart rate at 72 h post-fertilization (hpf), exhibiting limited influence on the embryonic development of zebrafish. Treatment with DCF significantly reduced whole-body thyroxine (T4) levels, and changed transcriptional levels of several genes related to the hypothalamic-pituitary-thyroid (HPT) axis. These findings provide important information regarding to the mechanisms of DCF-induced developmental toxicity and thyroid disruption in fish.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Diclofenac/toxicity , Larva/genetics , Thyroid Gland , Thyroid Hormones , Water Pollutants, Chemical/toxicity
9.
RSC Adv ; 10(22): 13267-13276, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-35492124

ABSTRACT

Polyurethane elastomer electrolyte (PUEE) represents a promising class of polymer solid electrolytes for the preparation and packaging of flexible devices by anodic bonding. In this work, PUEEs were designed and prepared via a pre-polymerization method and cured at room temperature using polypropylene glycol (PPG), toluene-2,4-diisocyanate (TDI) and 1,4-butanediol (BDO) in the presence of varying amounts of lithium bis(trifluoromethanesulphonyl)imide (LiTFSI). All PUEEs exhibited high thermal stability and conductivity, with the highest ionic conductivity of 9.6 × 10-5 S cm-1 for PUEE6 (n [NHCOO]/Li+ = 1) at 55 °C. The results showed that LiTFSI was dissolved completely in the polyurethane matrix, and the complexing reactions occurred between the lithium ions and the polar groups of polyurethane. After that, the prepared PUEE and the Al sheet were successfully joined by the anodic bonding process. The microstructures of the bonded interface between PUEE and the Al sheet with a clear intermediate bonding layer could be observed in the cross-section scanning electron microscopy (SEM) images, and the elements in each layer were also detected by energy dispersive spectroscopy (EDS), which indicated that the PUEE and the Al sheet were bonded together. The maximum tensile strength for bonded PUEE6/Al was up to 0.45 MPa. All these results demonstrated that the prepared PUEE material would be a promising candidate for the preparation and packaging of flexible devices by anodic bonding.

10.
RSC Adv ; 9(39): 22176-22184, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-35519492

ABSTRACT

A new series of hyperbranched polymers consisting of fluorene-alt-carbazole as the branches and the three-dimensional-structured spiro[3.3]heptane-2,6-dispirofluorene (SDF) as the core were designed and synthesized by one-pot Suzuki coupling polycondensation. A phosphor group with broad full width at half maximum (FWHM) bis(1-phenyl-isoquinoline)(acetylacetonato)iridium(iii) (Ir(Brpiq)2acac, 0.08 mol%) as the red-light emitting unit and bis(2-(4-bromophenyl)-1-[6-(9-carbazolyl)hexyl]-imidazole)(2-(5-(4-fluorinated phenyl)-1,3,4-triazole)pyridine)iridium(iii) ((CzhBrPI)2Ir(fpptz)) as the green-light emitting unit were introduced into the backbones to obtain sunlight-style white-light emission by adjusting the feeding ratios of (CzhBrPI)2Ir(fpptz) (0.08 to 0.32 mol%). The results indicate the synthesized polymers show high thermal stabilities and good amorphous film morphology because of the hyperbranched structures. Besides, the lowest unoccupied molecular orbital (LUMO) levels of polymers were reduced and the electron injection was improved because of excellent electron-transporting ability of the triazole unit in the green group. The hyperbranched structures can effectively suppress the polymers' chain distortion and aggregation, and promote the incomplete Förster resonance energy transfer (FRET) efficiency from fluorene-alt-carbazole segments to Ir complex units. As a result, the devices with hyperbranched polymer light-emitting layers realize white light emission, and the optimized device also exhibits good electroluminescent (EL) performance with Commission Internationale de l'Eclairage (CIE) coordinates at (0.32, 0.31), a maximum luminance of 9054 cd m-2, a maximum current efficiency of 3.59 cd A-1 and a maximum Color Rendering Index (CRI) of 91. The hyperbranched polymers based on fluorene-alt-carbazole branches and a SDF core and high-efficiency phosphor groups with broad full width at half maximum are attractive candidates for sunlight-style white polymer light-emitting device.

11.
RSC Adv ; 9(62): 36058-36065, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-35540583

ABSTRACT

In this work, a series of hyperbranched copolymers with fluorene-alt-carbazole as the branches, three-dimensional-structured spiro[3.3]heptane-2,6-dispirofluorene (SDF) as the core, and iridium 1-(4-bromophenyl)-isoquinoline (acetylacetone) (Ir(Brpiq)2acac) as the dimming group were synthesized by one-pot Suzuki polycondensation for white emission. All copolymers show great thermal stabilities and high hole-transporting ability due to the introduction of the carbazole unit. The hyperbranched structures for copolymers can suppress the interchain interactions efficiently, and help to form amorphous films. The fabricated polymer light-emitting devices (PLEDs) based on the above synthesized copolymers realize good white light emission, and achieve high electroluminescence (EL) performance. For example, for the optimized PLED, the maximum luminance and current efficiency reach 6210 cd m-2 and 6.30 cd A-1, respectively, indicating the synthesized hyperbranched copolymers have potential application in solution-processable white polymer light-emitting diodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...